Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

6-(2-Fluorobenzylidene)-2-[1-(2-fluoro-4-biphenyl)ethyl]-thiazolo[3,2-b][1,2,4]triazol-5(6H)-one

Yavuz Köysal, ${ }^{\text {a }}$ * Samil Isıık, ${ }^{\text {a }}$ Emine Dog̃das, ${ }^{\text {, }}$ Birsen Tozkoparan ${ }^{\text {b }}$ and Mevlüt Ertan ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, 55139 Samsun, Turkey, and ${ }^{\mathbf{b}}$ Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100 Sıhhiye, Ankara, Turkey Correspondence e-mail: yavuzk@omu.edu.tr

Received 5 January 2004
Accepted 20 February 2004
Online 21 April 2004

The title compound, $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{OS}$, was synthesized from 6-(benzylidene)thiazolo[3,2-b][1,2,4]triazol-5(6H)-one. The fused thiazolo[3,2-b][1,2,4]triazole system is essentially planar, and bifurcated $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ interactions are present between molecules.

Comment

Since 6-(benzylidene)thiazolo[3,2-b][1,2,4]triazol-5(6H)-one is structurally related to 5-(3,5-di-tert-butyl-4-hydroxybenzylidene) thiazol-4-one, which forms the nucleus of a number of compounds with anti-inflammatory activity, our interest has focused recently on the synthesis and chemistry of this type of compound (Song et al., 1999). In earlier studies, we synthesized new derivatives by combining condensed triazole with ibuprofen and S-naproxen, which belong to the class of 2-arylpropionic acid derivatives of non-steroidal anti-inflammatory drugs, to improve its effectiveness, and these derivatives were evaluated for their anti-inflammatory activity. In a continuation of our research programme on the synthesis of novel heterocyclic systems which have analgesic or antiinflammatory activity, we have prepared some new 6-(benzylidene)thiazolo[3,2-b][1,2,4]triazol-5(6H)-ones starting from flurbiprofen and have determined their anti-inflammatory activities. In order to clarify the structure of this type of compound, an X-ray structure determination of the title compound, (I), has been carried out, and the results are presented here.

In compound (I), the fused thiazolo[3,2-b][1,2,4]triazole system is essentially planar. The maximum deviations from the plane of the eight-membered thiazole-triazole system are 0.030 (6) and -0.040 (4) \AA for atoms C9 and N1, respectively. The puckering parameters (Cremer \& Pople, 1975) of this
system are $q_{2}=0.045(5)^{\circ}$ and $\varphi=269(7)^{\circ}$. Atoms C10 and N1 are on opposite sides of the plane passing through atoms S1, C8 and C9, at distances of 0.081 (5) and 0.106 (4) \AA, respectively. The thiazole-triazole system makes a dihedral angle of 34.54 (18) ${ }^{\circ}$ with the $\mathrm{C} 1-\mathrm{C} 6$ ring and $86.70(13)^{\circ}$ with the $\mathrm{C} 14-$ C19 ring. Rings C1-C6 and C14-C19 are almost perpendicular to each other, with a dihedral angle of $85.42(17)^{\circ}$.

(I)

The $\mathrm{C} 7-\mathrm{C} 8$ bond is a double bond, while $\mathrm{C} 1-\mathrm{C} 7$ and $\mathrm{C} 11-\mathrm{C} 12$ are single bonds. A similar lengthening of the $\mathrm{S} 1-$ C 8 bond relative to the $\mathrm{S} 1-\mathrm{C} 10$ bond has been observed in the structure of a similar compound (Özbey et al., 1999).

Compound (I) is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ intermolecular contacts. The $\mathrm{C} 4-\mathrm{H} 4$ bond forms a bifurcated contact to two acceptors, namely atoms N 3 and O 1 $\left[\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O} 1^{\mathrm{i}}\right.$ and $\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{~N} 3^{\mathrm{i}}$; symmetry code: (i) $x+\frac{1}{4}$, $\left.-y+\frac{1}{4}, z+\frac{5}{4}\right]$ (Table 2). The bifurcated nature of the contact explains the relatively large $\mathrm{H} \cdots A$ distances and the relatively small $D-\mathrm{H} \cdots A$ angles. Other important intermolecular

Figure 1
A view of the molecule of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 2
A crystal-packing diagram for (I), viewed along the a axis.
contacts are $\mathrm{C} 15-\mathrm{H} 15 \cdots \mathrm{~F} 2^{\mathrm{ii}}$ and $\mathrm{C} 23-\mathrm{H} 23 \cdots \mathrm{~F} 2^{\mathrm{iii}}$ (Table 2), where atom F 2 accepts hydrogen bonds from $\mathrm{C}-\mathrm{H}$ donors [symmetry codes: (ii) $x-\frac{1}{4},-y+\frac{1}{4}, z-\frac{1}{4}$; (iii) $x-\frac{1}{4}, y+\frac{1}{4}$, $\left.z+\frac{3}{4}\right]$.

Experimental

The synthesis of (I) was carried out simply by heating equimolar amounts of 3-[1-(2-fluoro-4-biphenyl)ethyl]-5-mercapto-1,2,4-triazole, chloroacetic acid and 2-fluorobenzaldehyde dissolved in acetic acid and acetic anhydride in the presence of anhydrous sodium acetate. The starting 1,2,4-triazole compound was prepared according to a previously reported procedure (Tozkoparan et al., 2000; Berk et al., 2001). Compound (I) was crystallized from acetone-water (yield 67.8%; m.p. $432-433 \mathrm{~K})$. Spectroscopic analysis: IR $\left(\nu, \mathrm{cm}^{-1}\right): 3087$, 3032 (aromatic $\mathrm{C}-\mathrm{H}$), 2970, 2932 (aliphatic $\mathrm{C}-\mathrm{H}$), 1744 (lactam $\mathrm{C}=\mathrm{O}), 1616(\mathrm{C}=\mathrm{N}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, p.p.m. $): 1.75\left(d, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $4.30(q, 1 \mathrm{H}, \mathrm{CH}), 7.10-7.60(\mathrm{~m}, 12 \mathrm{H}$, aromatic H$), 8.30(s, 1 \mathrm{H}, \mathrm{CH})$.

Crystal data

$\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{OS}$
$M_{r}=445.48$
Orthorhombic, Fdd 2
$a=24.059(3) \AA$
$b=54.213(5) \AA$
$c=6.5223(5) \AA$
$V=8507.3(15) \AA^{3}$
$Z=16$
$D_{x}=1.391 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation

Cell parameters from 8331 reflections
$\theta=1.5-24.9^{\circ}$
$\mu=0.19 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, yellow
$0.40 \times 0.23 \times 0.13 \mathrm{~mm}$

Data collection

Stoe IPDS-2 diffractometer ω scans
10401 measured reflections
2135 independent reflections
$R_{\text {int }}=0.065$

813 reflections with $I>2 \sigma(I)$
$\theta_{\text {max }}=25.5^{\circ}$
$h=-28 \rightarrow 28$
$k=-52 \rightarrow 64$
$l=-6 \rightarrow 7$

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

S1-C10	$1.747(6)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.511(7)$
$\mathrm{S} 1-\mathrm{C} 8$	$1.763(6)$	$\mathrm{F} 1-\mathrm{C} 18$	$1.391(5)$
N1-N3	$1.386(5)$	$\mathrm{O} 1-\mathrm{C} 9$	$1.193(6)$
N1-C9	$1.394(7)$	$\mathrm{C} 8-\mathrm{C} 7$	$1.331(6)$
C11-N3	$1.314(6)$	$\mathrm{C} 1-\mathrm{C} 7$	$1.435(7)$
C11-N2	$1.376(6)$		
			$114.8(4)$
C10-S1-C8	$88.3(3)$	$\mathrm{N} 1-\mathrm{C} 10-\mathrm{S} 1$	$132.5(5)$
C10-N1-N3	$110.0(4)$	$\mathrm{N} 2-\mathrm{C} 10-\mathrm{S} 1$	$110.8(5)$
C10-N1-C9	$117.9(5)$	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 14$	$128.5(5)$
N3-C11-N2	$115.5(5)$	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 1$	
N1-C10-N2	$112.7(5)$		
			$1.1(9)$
C12-C11-N3-N1	$172.5(5)$	$\mathrm{S} 1-\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 1$	$146.5(6)$
N3-C11-C12-C14	$130.5(6)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 8$	
N2-C11-C12-C14	$-58.2(7)$		

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.069$
$S=0.67$
2135 reflections
291 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0269 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.24 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.12 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.00023 (4)

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.57	$3.333(8)$	140
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{~N}^{\mathrm{i}}$	0.93	2.71	$3.551(8)$	150
$\mathrm{C} 15-\mathrm{H} 15 \cdots \mathrm{~F}^{\mathrm{ii}}$	0.93	2.54	$3.448(6)$	165
C23-H23 $\cdots \mathrm{F}^{\text {iii }}$	0.93	2.41	$3.307(8)$	162
Symmetry codes: (i) $\frac{1}{4}+x, \frac{1}{4}-y, \frac{5}{4}+z ;$ (ii) $x-\frac{1}{4}, \frac{1}{4}-y, z-\frac{1}{4} ;$; (iii) $-\frac{1}{4}-x, \frac{1}{4}+y, \frac{3}{4}+z$.				

H atoms were located geometrically and refined using a riding model, fixing the $\mathrm{C}-\mathrm{H}$ distances at $0.93,0.97$ and $0.96 \AA$ for aromatic, CH_{2} and $\mathrm{CH}_{3} \mathrm{H}$ atoms, respectively. The $\mathrm{N} 1-\mathrm{C} 10$ bond length is a little short compared with the literature value. The intensity data collected for the title structure are generally weak. Friedel-related reflections were merged in the final refinement because of the meaningless value of the absolute structure parameter (Flack, 1983).

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97; molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1997) and PARST (Nardelli, 1995).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: AV1166). Services for accessing these data are described at the back of the journal.

References

Berk, B., Aktay, G., Yeşilada, E. \& Ertan, M. (2001). Pharmazie, 56, 613-616. Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Özbey, S., Kendi, E., Tozkoparan, B. \& Ertan, M. (1999). Acta Cryst. C55, 1939-1941.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Song, Y., Connor, D. T., Doubleday, R., Sorenson, R. J., Sercel, A. D., Unangst, P. C., Roth, B. D., Gilbertsen, R. B., Chan, K., Schrier, D. J., Guglietta, A., Bornemeier, D. A. \& Dyer, R. D. (1999). 42, 1151-1160.
Stoe \& Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.
Tozkoparan, B., Gökhan, N., Aktay, G., Yeşilada, E. \& Ertan, M. (2000). Eur. J. Med. Chem. 35, 743-750.

